

INSTALLATION INSTRUCTIONS AND USER GUIDE

Part no. 744018EN, Week 51/2022 EN

Modbus-KNX gateway M-WRG-KNX-GW

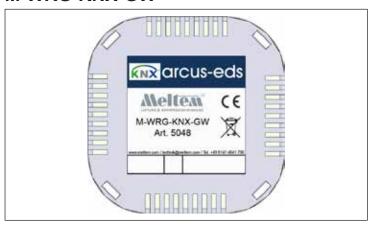


Fig. 1: Modbus-KNX gateway

1 Introduction

1.1 Notes on these instructions

- Read all the instructions carefully to avoid possible risks and mistakes.
- ► These instructions are part of the product. Keep the instructions in a safe place for future reference.

NOTICE

When operating the ventilation unit, also follow the operating instructions that were supplied with your unit.

1.2 Description

The Modbus-KNX gateway is used to control a ventilation unit of the operation via Modbus type via KNX bus. It can only be used in conjunction with an M-WRG-II P/E-M (-F, -FC) or M-WRG-S M (-F, -FC) unit. The gateway is fitted inside the ventilation unit. The gateway is commissioned using the Engineering Tool Software (ETS) in combination with the associated application program. All functions are parameterised and programmed via the ETS.

NOTICE

- One gateway is needed for each ventilation unit.
- A 24 V auxiliary voltage and a KNX connection are to be provided by the customer.

1.3 Target group

These installation and operating instructions are aimed at two target groups:

The activities described in chapter "4 Installation in the M-WRG-II ventilation unit", chapter "5 Installation in the M-WRG ventilation unit" and chapter "6 Wiring" must only be carried out by specialised personnel with the following qualifications:

- Training in the installation and commissioning of electrical devices
- Training in electrical hazards and the local safety requirements
- Knowledge of the relevant standards and directives
- Knowledge and observance of this document and all the safety instructions

The other chapters of this document are intended for users of the Modbus-KNX gateway. It assumes prior knowledge of the KNX bus and the Modbus protocol.

1.4 EU declaration of conformity

The Modbus-KNX gateway described below

Type: M-WRG-KNX-GW Part number: 5048 manufactured by

Meltem Wärmerückgewinnung GmbH & Co. KG

Am Hartholz 4 82239 Alling

conforms to the regulations and standards listed in the EU Declaration of Conformity.

1.5 Technical data

Product characteristics				
Dimensions (W x H x D)	50 mm x 50 mm x 20 mm			
Weight	approx. 310 g			
Housing material	Makrolon 6265X V-0 (PC)			
Product database	contained in the ETS			
Ambient conditions				
Ambient temperature during operation	-20 °C to 55 °C			
Ambient temperature for storage and shipping	-20 °C to 85 °C			
IP code	IP20			
Electrical connection				
Bus coupler	integrated			
Auxiliary voltage for Modbus units	12 V DC			
Auxiliary voltage current consumption	max. 100 mA			
KNX operating voltage (bus voltage)	21 V DC to 32 V DC			
KNX power consumption	approx. 240 mW at 24 V DC			

1.6 Environmentally-friendly disposal

The components of the Modbus-KNX gateway must not be disposed of in the non-recyclable waste bin.

- ▶ In Germany, metal and plastic components should be disposed of at the local recycling centre. The national regulations in other EU states should also be followed.
- In Germany, electrical components should be disposed of in accordance with the Electrical and Electronic Equipment Act (ElektroG). In other EU states, the national implementation of the Waste Electrical and Electronic Equipment Directive 2012/19/EU (WEEE) should be followed.
- The regulations and statutory requirements in your own country concerning disposal should also be followed.

1.7 Explanation of the symbols used

- ► This symbol indicates an action to be taken.
- This symbol indicates a list.

2 Safety

The Modbus-KNX gateway is approved only for use in dry interior areas and must be protected against humidity and moisture to prevent short-circuits.

2.1 Hazard classification

DANGER

The signal word designates a hazard with a **high** degree of risk which, if it is not avoided, will result in death or severe injury.

⚠ WARNING

The signal word designates a hazard with a **medium** degree of risk which, if it is not avoided, will result in death or severe injury.

A CAUTION

The signal word designates a hazard with a **low** degree of risk which, if it is not avoided, could result in minor or moderate injury.

NOTICE

A note as used in this manual contains important information about the product or about a part of the manual to which particular attention should be paid.

2.2 Intended use

The Modbus-KNX gateway must only be used to control Modbus units from the M-WRG-II and M-WRG series. Any different or more extensive usage will be regarded as contrary to the intended use. The intended use also includes compliance with all the notes in these instructions.

For any use contrary to the intended use, Meltem Wärmerückgewinnung GmbH & Co. KG shall accept no liability for any damage that may occur and offers no warranty that the components will work perfectly and correctly.

3 Items supplied

- Modbus-KNX gateway M-WRG-KNX-GW
- 4x terminal block (red/black/yellow/white)
- 5-pole terminal (green) with connecting wires
- Velcro strip and network connection cover with cable leadthrough (only when ordering for a M-WRG-Modbus unit)

4 Installation in the M-WRG-II ventilation unit

4.1 Remove the cover from the ventilation unit

Using both thumbs, press the two latches on the bottom of the ventilation unit. The unit cover will come away.

4.2 Remove the electronics compartment cover

A DANGER

Potentially fatal voltages in the vicinity of the connection board

- The electrical installation work must only be carried out by a qualified electrician.
- The VDE regulations or any special safety regulations applicable in your country apply to the electrical installation work.
- ▶ Before starting installation or maintenance work, disconnect the mains cable for powering the ventilation unit on all poles from the mains supply.
- Observe the five safety rules (DIN VDE 0105-100, EN 50110-1) for working on electrical systems:
 - Disconnect from mains (all-pole disconnection of a system from live parts)
 - Secure against reconnection
 - Check that the system is voltage-free
 - Earth and short-circuit
 - Cover or block off access to adjacent live parts

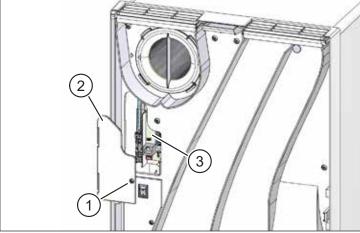


Fig. 2: Remove the electronics compartment cover

- Use the screwdriver to loosen the Torx screw (item 1 in Fig. 2) on the electronics compartment cover (item 2 in Fig. 2).
- ▶ Remove the electronics compartment cover to access the connection board (item 3 in Fig. 2).

4.3 Wire the gateway

- Wire the gateway to the connection board in the ventilation unit as shown in the wiring diagram (see Fig. 4).
- Wire the gateway to the to the KNX system as shown in the wiring diagram (see Fig. 5).

4.4 Final tasks

- ▶ Position the gateway inside the ventilation unit in the vicinity of the connection board (item 3 in Fig. 2).
- ▶ Secure the electronics compartment cover (item 2 in Fig. 2).
- Attach the cover to the ventilation unit.

5 Installation in the M-WRG ventilation unit

Using both thumbs, press the two latches on the bottom of the ventilation unit. The unit cover will come away.

5.1 Replace the network connection cover

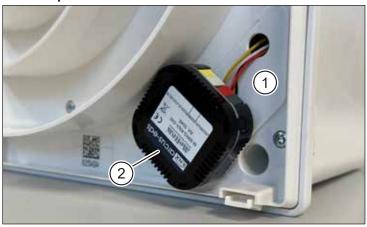


Fig. 3: Replace the network connection cover

Replace the existing network connection cover with the version with the cable lead-through (item 1 in Fig. 3, supplied as standard).

5.2 Wire the gateway

- ▶ Wire the gateway to the connection board in the ventilation unit as shown in the wiring diagram (see Fig. 4).
- Wire the gateway to the to the KNX system as shown in the wiring diagram (see Fig. 5).

5.3 Final tasks

- ► Secure the gateway (item 2 in Fig. 3) to the network connection cover (item 1 in Fig. 3) using the Velcro strip provided.
- ► Attach the cover to the ventilation unit.

6 Wiring

6.1 Wiring diagram: gateway – connection board in the ventilation unit

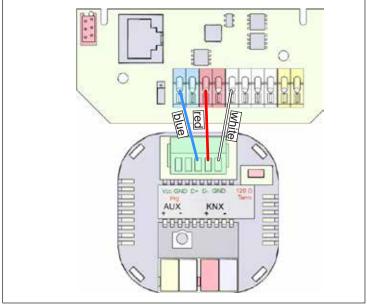


Fig. 4: Wiring diagram: gateway - connection board

6.2 Wiring diagram: gateway - KNX system

The gateway is connected to an existing KNX system using the KNX terminal blocks (red/black) provided. An additional 24 V DC power supply is also required on site (connected via yellow/white terminal blocks).

The programming button (item 1 in Fig. 5) is on the back of the gateway.

NOTICE

Note the following when inserting the terminal blocks:

- Connect up the terminal blocks in pairs: tab of the white block in the groove of the yellow block, tab of the black block in the groove of the red block.
- The 4-way connections on the terminal blocks point upwards.

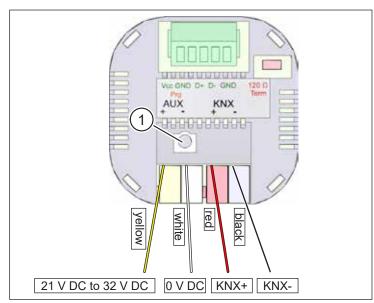


Fig. 5: Wiring diagram: gateway – KNX system

7 Data points

Communication object	Read/ write	Function/description				Unit	
1	W	Operation					
2	R	Error message					
3	R	Frost protection					
4	R	Exhaust air temperature					°C
5	R	Outdoor air temperature					°C
6	R	Extract air temperature					°C
7	R	Supply air temperature					°C
8	R	Humidity, extract air				%	
9	R	Humidity, supply air				%	
10	R	CO ₂ , extract air (deactivated by default)				ppm	
11	R	VOC, supply air (deactivated by default)				ppm	
12	R	Ventilation level for extract air				m³/h	
13	R	Ventilation level for supply air				m³/h	
14	R	Filter change					
15	R	Time until filter change				Days	
16	R	Unit operating hours				h	
17	R	Motor operating hours				h	
			Min.	Max.	Step	Default	
18	R/W	Rel. humidity threshold value	40	80	1	60	%
19	R/W	Min. ventilation level, humidity control	0	100	1/10*	10	m³/h
20	R/W	Max. ventilation level, humidity control	10	100	1/10*	60	m³/h
21	R/W	CO ₂ starting point 500		1200	1	800/600*	ppm
22	R/W	Min. ventilation level, CO ₂ control	0	100	1/10*	10	m³/h
23	R/W	Max. ventilation level, CO ₂ control	10	100	1/10*	60	m³/h
24	R/W	Ventilation level for external control input	10	100	1/10*	60	m³/h
25	R/W	Switch-on delay for ext. control input	0	240	1	1	min
26	R/W	Run-on time for ext. control input	0	240	1	15	min
27	W	Operation unbalanced (extract air motor)					

^{*} Value applies to M-WRG

8 Sensors in the different ventilation unit types

	Ventilation unit type				
Sensor type	M-WRG-II P-M / M-WRG-II E-M	M-WRG-II P-M-F / M-WRG-II E-M-F	M-WRG-II P-M-FC / M-WRG-II E-M-FC	with option M-WRG-II O/VOC-AUL	
••	M-WRG-S M	M-WRG-S M-F	M-WRG-S M-FC	-	
Exhaust air temperature	X	X	X	X	
Outdoor air temperature		X	X	X	
Extract air temperature		X	X	X	
Supply air temperature		X	X	X	
Rel. humidity, extract air		X	X	X	
Rel. humidity, supply air		X	X	X	
CO ₂ , extract air			X	X	
VOC, supply air				X	

9 Configuration

The KNX gateway M-WRG-KNX-GW is configured via the ETS. The associated application program can be obtained from the ETS catalogue.

The gateway is supplied unprogrammed. All functions are set and programmed via the ETS.

The gateway is configured with the following settings at the factory:

Fig. 6: Factory settings for the KNX gateway

10 Read communication objects

The channels of the gateway are predefined with the possible data points. Communication objects which are read only can be linked directly to a group address and displayed.

11 Write communication objects

Settings can be changed on the unit using communication objects 17-25. To do this, the value for the communication object is changed accordingly.

Burder *	None	Diget lander Designer	Goog Robbs Length C R W E III Date Type Princity
de	:O Spenier	Fidure Unsigned edit.	160 E. R. W. T. E. downer by Life
(2)	Duraut Tirtir minosey	Tiligat Designed See	Taylor C. B T sturm politic
refo	Curpus Prim protection	6-Byte Unsigned Inte	Table C # T - course pu Line
121	Data Side or entertainers	A Total Treat colors	Above C. R. T energy C. Line
1251	Dated Datemark temperature	- 4- Core Floor Labor	district to the first sengett have
1211	Dutaul, Tabled or sergendure	4-b/e flux later	Allers C. R. v. T. v. mengell. ton
stle .	Dustric Scotts on temperature	4-by-Toucher	About C f - 1 - elegal ton
40	Durgoot, Software Tournailing	2-5 re-triagred ine.	I topic C. R. v. J. v. pales . San
420	Datasii Supely Nemality	2-bre-trug-edinte.	These C R + T + poles 1 lan
429	Dutaut Hermation level educat	1-8/a Vrugnet ma.	Tayle C A + T + covere py Los
120	Durpus, Hardiston level supply	14/3 Jrugnal Hs.	Talk C. 4 - T - partir pulse
1211	Datasia All Standards	1-Ayra Unsigned into.	Tayle C. R T gaintergulies
ci.	Duraut, Time until sel filter change	2.8/m Unigned Irra	7bbc C € . T . piles Inc.
rate:	Dugue, Opening keurs derüte	4 flow Uniqued New	Abject C. R T. cover-puties -
411	Dursian December hours have	4 Sym Unalgood Irea	Abon C. E T coemp.lin-
120	(C. Sr. hundry metrosis	1 Specificación des	The C E in T E mater pulses
Service .	(E) WA SI, Namedy come:	1 Byte Uniquet ten.	TOM T A R T T champy in-
171	(C) No. 15 Aurority control	Tribus Designed Ste.	The C + R 2 C metro-less
-21=	(O CCC cartainet	2-bre troughed tree	Their C P No 7 L print Law
di.	(G. Mr. V. COCurrent)	Tilga Unique Ha.	Table C R W T & assett pulses
125.0	I/O May VL CCC parties	Trible Uniques retain	Third C. R. W. T. S. specks pro-line
1231	IO fertilizated encourants	Trick (Progress ress.	Table C A N 7 V contraction
120	(C Date where contact and	Title Chapted His.	Table C. R. H. T. E. startle policy
4216	10 Aut at less analysis serial sand	Tribate charge of the	Tape II A WT & coefficient
12510	C Specifics untakened extract the	1 Byte Chalgrant Into	Tale C. R. R. T. C. coeter po. Lon.
	Cursus Seneral Error	Served Sect	THE E R T . NOWAR INC.

Fig. 7: Communication objects

12 Ventilation levels setting

Use the following table for communication objects 0 and 26 in order to change the ventilation level (VL) of the unit:

Communication object 0				
Value	Mode			
0	OFF	OFF		
1 - 99	Volume flow rate	VL % SUP / ETA		
100 - 200*	Supply air volume unbalanced	VL % SUP	Only in conjunction with communication object 26	
202	Automatic mode	SUP / ETA		
203	Humidity mode	SUP / ETA		
204	CO ₂ mode	SUP / ETA		
205	Intensive ventilation	SUP / ETA		

Communication object 26				
Value	Mode			
1	Extract air volume unbalanced		Only in conjunction with communication object 0, value 100-200	

^{*} Value corresponds to m³/h minus 100 (example: 130 = 30 m³/h)

13 Typical application

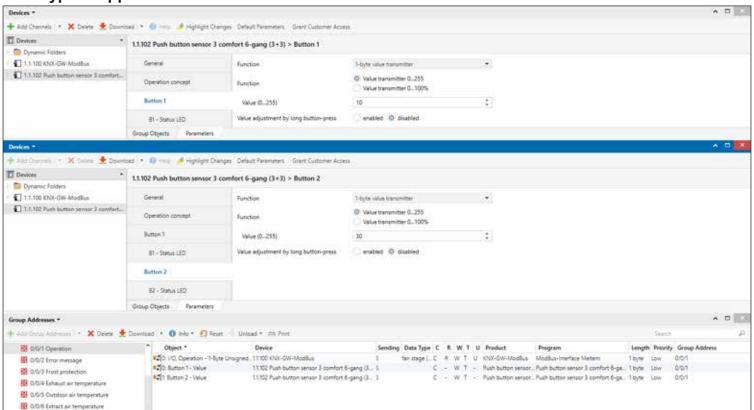


Fig. 8: Typical application