MÜLLER-BBM

Müller-BBM GmbH Robert-Koch-Str. 11 82152 Planegg bei München

Telefon +49(89)85602 0 Telefax +49(89)85602 111

www.MuellerBBM.de

M. Eng. Philipp Meistring Telefon +49(89)85602 228 Philipp.Meistring@mbbm.com

11. Juni 2018

M133600/04 MSG/STEG

Dezentrales Lüftungsgerät mit Wärmerückgewinnung der Serie M-WRG – Einbauvariante U²

Prüfung der außenseitig abgestrahlten Schallleistung nach DIN EN ISO 9614-2

Prüfbericht Nr. M133600/04

Auftraggeber: Meltem

Wärmerückgewinnung GmbH & Co. KG

Am Hartholz 4 82239 Alling Deutschland

Bearbeitet von: M. Eng. Philipp Meistring

Berichtsdatum: 16. März 2018 (Originalfassung)

11. Juni 2018 (1. überarbeitete Fassung)

Lieferdatum der Prüfobjekte: 17. Juli 2017

Prüfdatum: 17. bis 19. Juli 2017

Berichtsumfang: Insgesamt 32 Seiten, davon

9 Seiten Textteil,
7 Seiten Anhang A,
7 Seiten Anhang B,
6 Seiten Anhang C,
2 Seiten Anhang D und
1 Seite Anhang E.

Müller-BBM GmbH HRB München 86143 USt-IdNr. DE812167190

Geschäftsführer:

Joachim Bittner, Walter Grotz,

Dr. Carl-Christian Hantschk, Dr. Alexander Ropertz,

Stefan Schierer, Elmar Schröder

Inhaltsverzeichnis

1	Situation und Aufgabenstellung	3
2	Grundlagen	3
3	Prüfobjekt und Prüfbedingungen	4
3.1	Lüftungsgerät und geprüfte Gerätevarianten	4
3.2	Prüfaufbau	5
3.3	Betriebsbedingungen	6
4	Durchführung der Prüfungen	7
5	Messergebnisse	9
6	Anmerkungen	9

Anhang A: Diagramme und Tabellen, Variante Standardfassadenabschluss ES

Anhang B: Diagramme und Tabellen, Variante Fensterlaibungslösung

Anhang C: Abbildungen des Prüfaufbaus

Anhang D: Herstellerzeichnungen

Anhang E: Prüfmittel

1 Situation und Aufgabenstellung

Im Auftrag der Meltem Wärmerückgewinnung GmbH & Co. KG, 82239 Alling, Deutschland, war für dezentrale Lüftungsgeräte mit Wärmerückgewinnung der Serie M-WRG, Einbauvariante U², der außenseitig abgestrahlte Schallleistungspegel durch Prüfstandsmessungen zu ermitteln. Die Prüfungen wurden für die Montagevarianten "Standardfassadenabschluss ES" und "Fensterlaibungslösung" durchgeführt.

Die Prüfungen erfolgten gemäß den Vorgaben in der für Einzelraumgeräte einschlägigen Produktnorm DIN EN 13141-8 [2] mittels Intensitätsverfahren der Genauigkeitsklasse 2 entsprechend DIN EN ISO 9614-2 [1]. Die Prüfungen erfolgten in jeweils sechs vorgegebenen Betriebsstufen.

2 Grundlagen

Diesem Prüfbericht liegen folgende Unterlagen zugrunde:

- [1] DIN EN ISO 9614-2: Akustik Bestimmung der Schallleistungspegel von Geräuschquellen aus Schallintensitätsmessungen; Teil 2: Messung mit kontinuierlicher Abtastung. 1996-12
- [2] DIN EN 13141-8: Lüftung von Gebäuden Leistungsprüfung von Bauteilen/ Produkten für die Lüftung von Wohnungen – Teil 8: Leistungsprüfung von mechanischen Zuluft- und Ablufteinheiten ohne Luftführung (einschließlich Wärmerückgewinnung) für ventilatorgestützte Lüftungsanlagen von einzelnen Räumen. 2014-09
- [3] Produktunterlagen Firma Meltem, Systemzeichnungen und Betriebszustände; übermittelt durch Fa. Meltem per E-Mail am 31.07.2017

3 Prüfobjekt und Prüfbedingungen

3.1 Lüftungsgerät und geprüfte Gerätevarianten

Es wurde ein Lüftungsgerät der Serie M-WRG in der Einbauvariante U² in unterschiedlichen Gerätekonfigurationen geprüft. Die Geräte in dieser Einbauvariante werden vollständig in die Außenwand integriert und sind vom Raum aus mit einem wandbündigen Metalldeckel (Abdeckung U²) verschlossen. Die Kanäle werden von der Geräteoberseite in der Wand (unterputz) bis zu den Lüftungsöffnungen geführt.

Alle Prüfungen wurden für ein Gerät im Standardeinbau (Ein-Raum-Variante) durchgeführt.

Hinsichtlich des Fassadenabschlusses wurden folgende Varianten geprüft:

Standardfassadenabschluss ES

Fort- und Außenluft werden über jeweils ein Kunststoffrohr DN 100 vom Gerät aus gerade nach außen geführt und sind auf der Außenwand mit einer Edelstahlschote abgedeckt.

- Fensterlaibungslösung

Fort- und Außenluft werden über jeweils ein Kunststoffrohr DN 100 vom Gerät aus in die Dämmebene und von dort unterputz mit Flachkanälen 110 mm x 54 mm zu den Außenöffnungen stirnseitig in der Fensterlaibung geführt. Der horizontale Verzug von den Geräteöffnungen bis zu den Öffnungen in der Fensterlaibung betrug im Prüfaufbau ca. 60 cm.

Weitere Angaben zum Aufbau des geprüften Gerätetyps sind den Herstellerzeichnungen in Anhang D zu entnehmen.

3.2 Prüfaufbau

3.2.1 Geräteeinbau

Die Prüfungen erfolgten an einem betriebsfertig montierten Lüftungsgerät. Der Einbau erfolgte durch einen Mitarbeiter des Auftraggebers in eine Trockenbaublende in der Prüföffnung des Fensterprüfstands mit folgendem Aufbau (von außen nach innen bzw. vom Sende- zum Empfangsraum):

57 mm Sandwichelement, bestehend aus

- 3 x 12,5 mm Gipsfaserplatte

19 mm MDF Platte

- ca. 290 mm Lufthohlraum, darin Mineralfaserdämmstoff *d* = 250 mm

57 mm Sandwichelement, bestehend aus

- 3 x 12,5 mm Gipsfaserplatte

- 19 mm MDF Platte

- 88 mm Vorsatzschale mit 75 mm Lufthohlraum, darin Mineralfaserdämmstoff *d* = 60 mm, raumseitig abgedeckt mit 12,5 mm dicker Gipsfaserplatte

Der Einbau des Gerätes erfolgte über einen systemeigenen Mauerkasten (Montageset U²; Formteil aus EPS). Die Einbauöffnung in der Trockenbaublende wurde entsprechend dem Mauerkasten erstellt. Die lichte Öffnung hatte Abmessungen von $B \times H = 470 \text{ mm} \times 490 \text{ mm}$ (= Außenabmessungen Mauerkasten zzgl. umlaufend 5 mm bis 10 mm Einbaufuge). Der Mauerkasten wurde mit umlaufend ca. 5 mm Abstand in die Prüföffnung eingestellt. Der umlaufende Luftspalt wurde beidseitig mit dauerplastischem Dichtstoff abgedichtet.

Innenseitig wurde die Öffnung in der Trockenbaublende (Vorsatzschale) auf die Einbaumaße des Gerätedeckels zzgl. umlaufend 5 mm Einbaufuge reduziert (*B* x *H* = 420 mm x 450 mm). Zu- und Abluftöffnungen wurden durch die Vorsatzschale in den Aufstellraum (= Empfangsraum) geführt. Die umlaufenden Einbaufugen zwischen dem Gerät und der Gipsfaserbeplankung sowie zwischen den Kanälen und der Gipsfaserplatte wurden mit dauerplastischem Dichtstoff abgedichtet. Die Raumöffnungen wurden mit den systemeigenen Tellerventilen ausgeführt.

Bilder des Prüfobjekts und der Prüfanordnung im Fensterprüfstand sind in Anhang C dargestellt. Weitere Angaben zum Aufbau des geprüften Gerätetyps sind den Herstellerzeichnungen in Anhang D zu entnehmen.

3.2.2 Montagevariante Standardfassadenabschluss ES

Die Öffnung in der Trockenbaublende wurde außenseitig mit 2 x 12,5 mm Gipsfaserplatten abgedeckt. Fort- und Außenluftkanäle wurden durch die Abdeckung geführt (runde Aussparungen entsprechend Rohrdurchmesser DN 100 zzgl. 10 mm). Der umlaufende Luftspalt zwischen Kanal und Gipsfaserplatte wurde mit dauerplastischem Dichtstoff abgedichtet. Der Fassadenabschluss (Edelstahlschote ES) wurde außen auf die Kanäle aufgesetzt und in der Trockenbaublende fixiert.

3.2.3 Montagevariante Fensterlaibungslösung

Fensterlaibung und Dämmebene wurden mit einer Box aus 19 mm dicken MDF-Platten nachgebildet, die sendeseitig auf die Trockenbaublende aufgesetzt wurde. Fort- und Außenluftkanäle wurden in dieser Box in Flachkanälen 110 mm x 54 mm um ca. 60 cm horizontal verzogen. Die Abmessungen der Box betrugen $B \times H \times T = 800$ mm x 700 mm 210 mm. Die Lüftungsöffnungen wurden an der seitlichen Stirnseite der Box angeordnet und mit dem Fassadenabschluss Fensterlaibung abgedeckt. Die Kanäle wurden in diesem Bereich in einem systemeigenen EPS-Formteil geführt. Der Lufthohlraum zwischen MDF-Box und dem EPS-Formteil wurde mit Mineralfaserdämmstoff ausgedämmt. Der umlaufende Luftspalt zwischen Box und Prüfstand wurde mit dauerplastischem Dichtstoff abgedichtet.

3.3 Betriebsbedingungen

Die Geräte werden in der Praxis dauerhaft oder bedarfsgesteuert automatisch betrieben. Die Schallleistungsprüfungen erfolgten davon abweichend bei manueller Steuerung in sechs durch den Auftraggeber vorprogrammierten Betriebsstufen.

Für die Betriebsstufen werden vom Auftraggeber folgende Leistungsdaten angegeben [3]:

-	Leistungsstufe 1:	Luftvolumenstrom	\dot{V}	$= 15 \text{ m}^3/\text{h}$
-	Leistungsstufe 3:	Luftvolumenstrom	\dot{V}	$= 30 \text{ m}^3/\text{h}$
-	Leistungsstufe 4:	Luftvolumenstrom	\dot{V}	$= 40 \text{ m}^3/\text{h}$
-	Leistungsstufe 6:	Luftvolumenstrom	\dot{V}	$= 60 \text{ m}^3/\text{h}$
-	Leistungsstufe 8:	Luftvolumenstrom	\dot{V}	$= 80 \text{ m}^3/\text{h}$
-	Leistungsstufe 10:	Luftvolumenstrom	\dot{V}	$= 100 \text{ m}^3/\text{h}$

Die Prüfungen wurden jeweils in einem stationären Betriebszustand ca. fünf Minuten nach Einschalten der jeweiligen Leistungsstufe durchgeführt. Innen- und Außenseite des Lüfters befanden sich in getrennten Räumen. Die Zugangstüren zum Empfangsraum (= Innenseite Lüfter) und Senderaum (= Außenseite Lüfter) wurden geschlossen gehalten.

Für die Messungen wurden im Senderaum des Fensterprüfstands durch Einstellen von Absorbermaterial reflexionsarme Umgebungsbedingungen realisiert. Während der Prüfungen herrschten folgende klimatische Bedingungen:

-	Luftdruck	95,0 kPa95,7 kPa
-	Lufttemperatur	24 °C25 °C
-	relative Luftfeuchtigkeit	48 %52 %

4 Durchführung der Prüfungen

Zur Ermittlung der Schallleistung wurde im oben beschriebenen Prüfaufbau und in der beschriebenen Prüfanordnung die Normalkomponente der Schallintensität auf einer quaderförmigen Messfläche über der jeweiligen Außenöffnung bestimmt.

Der Quader hatte folgende Teilmessflächen:

Montagevariante Standardfassadenabschluss ES

-	S1	Stirnfläche	$B \times H = 0.58 \text{ m} \times 0.77 \text{ m}$
-	S2	Seitenfläche oben	$B \times T = 0.58 \text{ m} \times 0.20 \text{ m}$
-	S3	Seitenfläche rechts	$H \times T = 0.77 \text{ m} \times 0.20 \text{ m}$
-	S4	Seitenfläche unten	$B \times T = 0.58 \text{ m} \times 0.20 \text{ m}$
-	S5	Seitenfläche links	$H \times T = 0.77 \text{ m} \times 0.20 \text{ m}$

Gesamtmessfläche (=Summe der Teilmessflächen) S_{gesamt} = 0,99 m².

Montagevariante Fensterlaibungslösung

-	S1	Stirnfläche	$B \times H = 0.20 \text{ m} \times 0.80 \text{ m}$
-	S2	Seitenfläche rechts	$H \times T = 0.80 \text{ m} \times 0.30 \text{ m}$
-	S3	Seitenfläche oben	<i>B</i> x <i>T</i> = 0,20 m x 0,30 m
-	S4	Seitenfläche unten	$B \times T = 0.20 \text{ m} \times 0.30 \text{ m}$
-	S5	Seitenfläche links	$H \times T = 0.80 \text{ m} \times 0.10 \text{ m}$

Gesamtmessfläche (=Summe der Teilmessflächen) $S_{qesamt} = 0,60 \text{ m}^2$.

Die Prüfung erfolgte nach DIN EN ISO 9614-2 [1].

Bei den ermittelten Geräuschen handelt es sich um stationäre Dauergeräusche ohne maßgebliche Pegelschwankungen.

Die Schallleistungspegel der Teilflächen wurden auf Basis der zeitlich und räumlich gemittelten Schallintensitätspegel auf der jeweiligen Messfläche bestimmt. Die Ermittlung der Intensitätspegel erfolgte in Terzen im Frequenzbereich 50 Hz...5000 Hz. Die Abtastung der Teilflächen erfolgte manuell auf mäanderförmigen Bahnen. Die Intensitätssonde wurde jeweils senkrecht zur Messfläche ausgerichtet. Für jede Teilfläche wurden je Betriebsstufe mindestens zwei Messdurchläufe durchgeführt. Die Mäanderausrichtung wurde dabei bei mindestens einem Durchlauf um 90° gedreht. Die Messflächenintensitätspegel wurden durch energetische Mittelung der Teilmessflächenintensitätspegel berechnet.

Jede Messfläche wurde je Betriebsstufe mindestens zwei Mal abgetastet. Die Standardabweichung der Intensitätspegel der individuellen Abtastungen lag überwiegend im Bereich der in DIN EN ISO 9614-2 [1] angegebenen frequenzabhängigen Grenzen für die Genauigkeitsklasse 2. Sofern die Grenzen überschritten wurden, ist dies in den Ergebnistabellen in Anhang A, Anhang B und Anhang C gekennzeichnet.

Nach DIN EN ISO 9614-2 [1] beträgt der maximal zulässige Druck-Intensitäts-Indikator für die Genauigkeitsklasse 2 $F_{\rm Pl}$ < $\delta_{p/0}$ - 10 dB. Bei der verwendeten Intensitätssonde wurde eine Phasenkalibrierung durchgeführt. Der festgestellte Druck-Restintensitäts-Abstand $\delta_{p/0}$ ist in Abbildung 1 dargestellt. Hieraus ergibt sich eine frequenzabhängige Untergrenze des maximal zulässigen Druck-Intensitäts-Indikators. In den Tabellen in den Anhängen A, B und C sind Terzbänder gekennzeichnet, in denen der Druck-Intensitäts-Indikator größer als $F_{p/}$ = $\delta_{p/0}$ - 10 dB betrug.

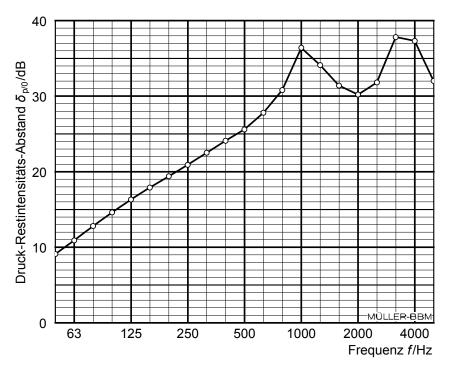


Abbildung 1. Druck-Restintensitäts-Abstand δ_{pl0} der Intensitätssonde nach der Phasenkalibrierung.

5 Messergebnisse

Die für M-WRG-Lüftungsgeräte in Einbauvariante U² in den untersuchten Leistungsstufen mit Standardfassadenabschluss ES und Fensterlaibungslösung auf der Außenseite ermittelten A-bewerteten Schallleistungspegel sind in Tabelle 1 aufgeführt. Die frequenzabhängigen Schallleistungspegel in Terz- und Oktavbandbreite sind in Abbildung A.1 (Anhang A) und Abbildung B.1 (Anhang B) dargestellt.

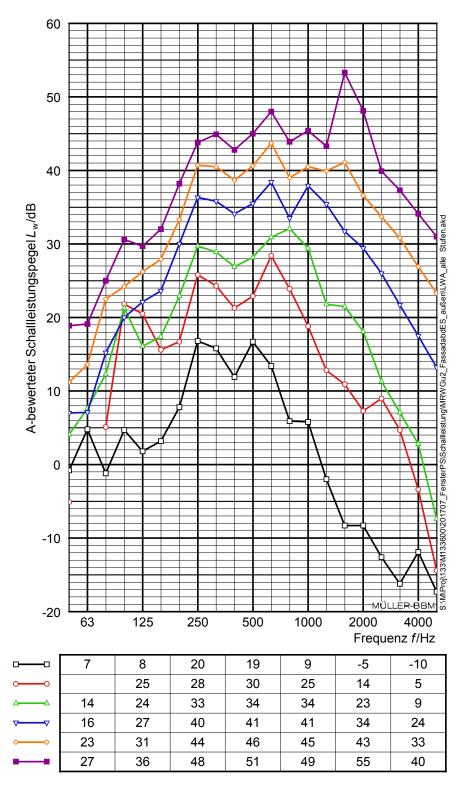
Tabelle 1. Messergebnisse Schallabstrahlung Außenseite: A-bewerteter Schallleistungspegel L_{WA} in dB.

	Stufe/ Volumenstrom \dot{V} in m³/h								
Variante	Stufe 1/ 15	Stufe 3/ 30	Stufe 4/ 40	Stufe 6/ 60	Stufe 8/ 80	Stufe 10/ 100			
Standard-Fassaden- abschluss ES	22,9	33,8	38,7	45,7	50,8	57,5			
Fensterlaibungslösung	22,5	30,0	35,9	43,2	49,3	55,4			

6 Anmerkungen

Die ermittelten Prüfergebnisse beziehen sich ausschließlich auf die untersuchten Gegenstände und beschriebenen Zustände.

M. Eng. Philipp Meistring (Projektverantwortlicher)


A. Ather

Dieser Prüfbericht darf nur in seiner Gesamtheit, einschließlich aller Anlagen, vervielfältigt, gezeigt oder veröffentlicht werden. Die Veröffentlichung von Auszügen bedarf der schriftlichen Genehmigung durch Müller-BBM.

Durch die DAkkS Deutsche Akkreditierungsstelle GmbH nach DIN EN ISO/IEC 17025 akkreditiertes Prüflaboratorium. Die Akkreditierung gilt für die in der Urkunde aufgeführten Prüfverfahren.

Anhang A: Ergebnistabellen, Standardfassadenabschluss ES

□——□ Stufe 1; $L_{w, A}$ = 22,9 dB
• Stufe 3; $L_{w, A}$ = 33,8 dB
\triangle Stufe 4; $L_{w, A}$ = 38,7 dB
$∇$ Stufe 6; $L_{w, A}$ = 45,7 dB
\leftarrow Stufe 8; $L_{w, A}$ = 50,8 dB
■ Stufe 10; L _{w, A} = 57,5 dB

Abbildung A.1. Prüfergebnisse Variante Standardfassadenabschluss ES: A-bewerteter Schallleistungspegel L_{WA} , Schallleistungspegel in Terzen (Diagramm) und Oktaven (Tabelle).

Tabelle A.1. Variante Standardfassadenabschluss ES, Leistungsstufe 1, $\dot{V}=15~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	Schall- leistungs- pegel L _{WA}				
			Teilfläche			[dB(A)]
	S1	S2	S3	S4	S5	
50		2,1		2,9	5,3	-0,8
63	5,8	5,6	6,8	4,0	4,8	4,8
80		1,4	5,5		1,4	-1,2
100	6,2		6,7	8,8		4,7
125		5,3	5,1	7,0	0,4	1,8
160	2,6 **	4,3	3,6	8,3		3,2
200	9,5	4,9	7,1	9,9	7,9	7,8
250	17,5	12,4	14,7	21,4	16,7	16,8
315	16,7	10,5	14,2	20,2	14,8	15,8
400	12,8	5,1	12,3	14,9	13,0	11,9
500	18,3	12,2	16,2	19,0	17,1	16,7
630	14,7	10,3	14,5	15,3	13,3	13,4
800	7,3	1,5	4,6	9,6	3,9	5,9
1000	7,6	-0,6	5,9	8,6	3,0	5,8
1250	-0,8 **		-2,8	3,4		-2,0
1600				1,0		-8,3
2000		0,9				-8,3
2500		-3,9	-13,4 *			-12,6
3150		-7,0				-16,2
4000		-2,7				-12,0
5000			-8,1			-17,3*

^{*} $F_{\text{pl}} \geq \delta_{\textit{pl}0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle A.2. Variante Standardfassadenabschluss ES, Leistungsstufe 3, $\dot{V}=30~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-bewerteter Messflächen-Intensitätspegel $L_{\text{I,A}}$ [dB(A)]						
		pegel L _{WA} [dB(A)]					
	S1	S2	S3	S4	S5		
50		-1,4			1,7	-5,1	
63							
80		10,2	7,3		8,9	5,1	
100	25,1 **	10,9	12,3		12,4 **	21,8	
125	20,3 **	10,9	13,2	26,7	14,0	20,5	
160		13,6	14,0	23,5	13,9	15,6	
200	17,1 **	12,7	18,7		18,2	16,7	
250	25,7	19,3	24,4	30,0	24,8	25,8	
315	23,8	17,0	22,9	29,0	23,3	24,3	
400	20,9	14,6	22,0	24,2	21,5	21,3	
500	22,6	19,9	23,3	25,7	22,3	22,9	
630	28,4	25,9	28,5	30,8	27,3	28,4	
800	23,2 **	19,0	23,3	28,6	21,9	23,9	
1000	19,3	10,9	18,3	22,0	17,0	18,8	
1250	11,4 **	6,4	11,4	18,9	9,1	12,8	
1600	8,5 **	2,6	7,4	18,2	3,6	10,9	
2000		0,9	5,3	16,0	-0,2	7,3 **	
2500	12,1 **	-2,2	2,6	3,4	-0,1	9,0	
3150	7,5 **	-1,8	1,6	-1,4	-4,2	4,7 **	
4000		-0,3	1,4	-1,0	-5,5	-3,4 **	
5000		-5,0				-14,4 *	

^{*} $F_{pl} \ge \delta_{pl0} - 10 \text{ dB}$

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle A.3. Variante Standardfassadenabschluss ES, Leistungsstufe 4, $\dot{V}=40~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el <i>L</i> _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S3	S4	S5	
50	6,8 **	2,4		0,8 *	2,3	4,1
63	10,5	5,3		4,6		7,6
80	11,6 **	9,0	11,3	15,4	13,5	12,3
100	20,6		17,6 *	24,5	24,5	21,3
125	15,2	13,3	16,0	19,6	16,2	16,1
160	15,6	18,3	18,1	19,4	18,5	17,4
200	23,1	17,5	22,9	25,3	22,6	22,9
250	29,2	23,5	28,4	34,2	28,8	29,7
315	28,5	20,5	28,2	33,4	28,2	28,9
400	26,6	21,3	27,0	29,8	27,0	26,9
500	28,1	26,4	27,5	31,0	27,6	28,2
630	30,8	28,1	30,5	34,2	29,4	30,9
800	32,6	24,1	32,0	35,2	30,4	32,1
1000	30,2	19,7	28,2	32,6	27,5	29,4
1250	21,0	14,7	19,4	27,8	17,8	21,8
1600	18,5	10,5	16,9	29,1	15,0	21,5
2000	14,8	8,3	13,6	25,8	11,2	18,1
2500	10,8	6,0	12,9	14,3	10,0	11,3
3150	7,1	1,6	7,9	9,8	6,3	7,1
4000	1,5	-1,5	4,0	7,3	0,6	2,8
5000		-8,8 *		0,7	-7,2	-7,4 *

^{*} $F_{pl} \ge \delta_{pl0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle A.4. Variante Standardfassadenabschluss ES, Leistungsstufe 6, $\dot{V}=60~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el <i>L</i> _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S 3	S4	S5	
50	7,4 **	6,4 *		13,0	2,7 *	7,0
63			10,1	13,8	7,4	7,1
80	12,0 *	12,7	15,6	19,7	17,1	15,2
100	18,9	15,7	20,0	24,0	20,3	20,0
125	21,8	17,9	22,6	25,2	21,7	22,1
160	23,6	23,0	23,4	24,7	23,7	23,6
200	30,1	25,8	30,2	32,2	29,8	30,0
250	36,2	29,0	34,8	40,3	35,7	36,3
315	35,9	26,7	34,7	39,6	35,1	35,8
400	34,0	28,2	34,1	36,9	34,1	34,1
500	35,7	33,3	35,1	37,9	34,6	35,5
630	38,6	35,7	38,4	41,2	37,2	38,5
800	33,9	26,8	32,8	36,4	32,3	33,5
1000	38,8	30,5	36,7	40,6	35,7	37,9
1250	36,2	27,5	32,7	38,9	33,0	35,4
1600	29,3	20,5	27,6	39,1	25,6	31,7
2000	27,1	19,9	26,0	36,7	23,4	29,4
2500	26,1	21,1	27,3	27,8	24,6	26,0
3150	22,3	14,6	21,9	23,9	20,2	21,7
4000	18,0	10,2	16,3	21,4	14,3	17,5
5000	13,3	5,8	10,4	18,3	10,1	13,2

^{*} $F_{\text{pl}} \geq \delta_{\textit{pl}0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle A.5. Variante Standardfassadenabschluss ES, Leistungsstufe 8, $\dot{V}=80~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	z A-bewerteter Messflächen-Intensitätspegel L _{I,A} [dB(A)]						
			pegel L _{WA} [dB(A)]				
	S1	S2	S3	S4	S5		
50		5,8		20,0	8,7	11,2	
63	10,7 *	8,9 *	15,1	19,4	11,2 *	13,6	
80	22,0 *	18,4	22,3	25,8	22,9	22,5	
100	23,7	21,2	23,1	28,1	23,6	24,2	
125	25,4	23,4	26,7	29,3	26,2	26,2	
160	27,4	27,9	27,9	29,2	28,4	27,9	
200	33,3	29,7	33,6	35,7	32,8	33,3	
250	40,4	34,9	39,2	44,9	40,1	40,7	
315	40,2	34,4	39,1	44,7	39,8	40,5	
400	38,4	31,2	39,3	41,7	38,8	38,7	
500	40,7	36,6	40,6	43,4	39,7	40,6	
630	43,7	40,7	44,0	46,2	42,8	43,7	
800	39,3	32,7	38,7	42,2	37,8	39,0	
1000	41,2	34,3	40,0	42,8	38,7	40,5	
1250	39,3	32,0	37,8	45,7	35,8	39,9	
1600	38,7	30,8	37,4	48,5	34,9	41,1	
2000	34,0	28,0	33,0	44,0	30,1	36,6	
2500	33,6	28,4	35,3	35,9	32,5	33,7	
3150	31,4	24,1	30,9	33,4	29,0	30,8	
4000	27,2	19,5	25,8	31,1	23,9	26,9	
5000	23,3	15,5	21,0	28,4	20,1	23,3	

^{*} $F_{pl} \ge \delta_{pl0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle A.6. Variante Standardfassadenabschluss ES, Leistungsstufe 10, $\dot{V}=100~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el L _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S 3	S4	S5	
50		5,7 *	9,9 *	28,2	5,2 *	18,9
63	15,4 *	10,3 *	17,2	26,4	16,5	19,1
80	24,5	21,4	23,7	28,9	25,0	25,0
100	30,1	27,0	30,0	34,3	30,1	30,6
125	29,2	26,6	30,2	32,6	29,4	29,7
160	31,7	31,7	32,4	33,4	32,1	32,0
200	38,2	33,1	38,4	40,5	38,3	38,2
250	43,7	36,1	42,0	48,3	42,9	43,8
315	45,0	35,9	43,0	49,1	44,0	44,9
400	42,8	36,8	43,0	45,7	42,6	42,8
500	45,3	42,0	44,4	47,6	44,0	45,0
630	48,1	45,0	48,2	50,5	46,8	48,0
800	44,4	36,9	42,7	47,0	42,4	43,9
1000	46,5	35,9	44,5	47,7	43,3	45,4
1250	43,2	36,8	41,0	48,7	39,2	43,3
1600	51,0	41,4	47,9	60,9	45,3	53,3
2000	45,8	37,0	43,1	55,7	40,3	48,1
2500	40,2	34,5	41,0	41,7	38,5	39,9
3150	38,2	30,0	37,1	39,4	35,7	37,3
4000	34,5	26,3	32,5	38,2	31,1	34,1
5000	31,2	22,8	28,1	36,0	27,3	31,0

^{*} $F_{\text{pl}} \geq \delta_{\textit{pl}0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Anhang B: Ergebnistabellen, Fensterlaibungslösung

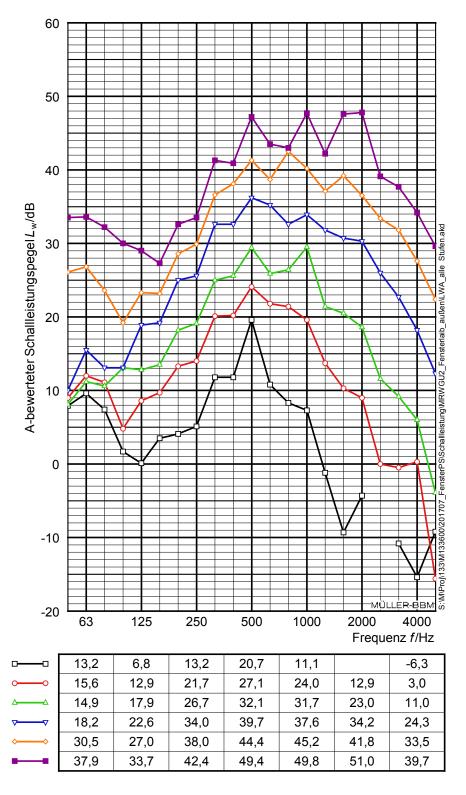


Abbildung B.1. Prüfergebnisse Variante Fensterlaibungslösung: A-bewerteter Schallleistungspegel L_{WA} , Schallleistungspegel in Terzen (Diagramm) und Oktaven (Tabelle).

□ Stufe 1; $L_{w, A}$ = 22,5 dB ○ Stufe 3; $L_{w, A}$ = 30,0 dB △ Stufe 4; $L_{w, A}$ = 35,9 dB

> → Stufe 6; $L_{w, A}$ = 43,2 dB → Stufe 8; $L_{w, A}$ = 49,3 dB

- Stufe 10; $L_{w, A}$ = 55,4 dB

Tabelle B.1. Variante Fensterlaibungslösung, Leistungsstufe 1, $\dot{V}=15~\rm m^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-b	Schall- leistungs- pegel L _{WA}				
			[dB(A)]			
	S1	S2	S3	S4	S5	
50	11,0	10,4 **	9,8 *	4,5 *	9,7	7,9
63	13,8	10,4	13,1	8,6 *	11,0	9,6
80	11,2	8,7	10,8	7,4	8,5	7,4
100	5,1	5,1		5,0		1,7
125	0,3	3,2	5,7	3,0		0,1
160	5,3	6,9	5,4	5,1	1,1	3,5
200	4,4	8,0	5,1	7,0	1,7	4,1
250	8,6	7,5	2,9	5,3	6,5	5,1
315	13,8	15,6	9,9	14,0	7,8	11,8
400	11,6	16,3	11,0	13,3	9,2	11,8
500	19,3	23,7	20,2	22,6	17,5	19,6
630	9,6	15,1	12,2	14,5	1,9	10,8
800	5,6	12,6	10,0	12,6	-2,1	8,3
1000	0,3	11,7	10,3	12,2		7,3
1250		3,5	2,5	2,8		-1,2
1600	-3,9		-2,1	-6,0		-9,3
2000	-1,4	-0,5 **		-1,6		-4,3
2500						
3150	-8,6	-6,0 **				-10,8
4000			-3,2			-15,5
5000		-3,5 **		-6,4 *		-9,2

^{*} $F_{\text{pl}} \geq \delta_{\textit{pl}0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle B.2. Variante Fensterlaibungslösung, Leistungsstufe 3, $\dot{V}=30~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el <i>L</i> _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S3	S4	S5	
50	12,3	11,0	10,5	9,3	11,3	9,0
63	13,4	16,0	11,2	11,7	10,7	12,0
80	12,6	15,1	9,1	11,8	9,3	11,1
100	6,8	8,5		9,8		4,8
125	9,6	12,9	10,6	8,4		8,6
160	10,5	13,3	10,8	13,0	6,9	9,7
200	14,7	16,6	12,1	16,9	14,1	13,3
250	16,0	17,1	13,7	16,9	14,3	14,0
315	21,3	24,4	18,2	20,6	16,7	20,1
400	20,0	24,9	19,8	19,7	17,5	20,2
500	24,1	28,1	25,5	26,0	22,4	24,1
630	19,9	25,9	24,8	25,2	14,7	21,8
800	18,6	25,7	24,0	25,3	13,6	21,4
1000	12,2	24,1	21,8	24,6	9,9	19,6
1250	11,6	17,6	16,1	18,4	10,1	13,7
1600	13,1	13,1	10,2	13,2	9,2	10,3
2000	13,8	10,6	5,2	11,3	6,5	9,0
2500	0,6	3,8	-0,8	5,0	-4,0	0,0
3150	-2,0	4,6	-2,0	0,8		-0,5
4000	0,8	4,8	2,1	-0,5		0,3
5000				-3,4		-15,6

^{*} $F_{pl} \ge \delta_{pl0} - 10 \text{ dB}$

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle B.3. Variante Fensterlaibungslösung, Leistungsstufe 4, $\dot{V}=40~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el <i>L</i> _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S3	S4	S5	1
50	14,7	9,0	8,3	11,2	8,7	8,1
63	15,5	12,3	9,4	12,9	13,2	11,2
80	14,8	12,3	9,7	13,7	9,1	10,6
100	12,9	17,6	11,8	16,4		13,1
125	13,0	17,5	13,4	13,4		12,8
160	14,2	17,5	13,7	16,4	9,8	13,5
200	20,6	21,2	15,0	20,9	19,0	18,2
250	21,2	22,2	18,1	21,6	20,0	19,1
315	26,5	29,2	22,8	26,2	20,7	25,0
400	25,8	30,2	25,4	25,6	22,0	25,6
500	29,7	33,4	30,6	30,9	26,5	29,4
630	24,9	30,1	28,2	29,6	18,1	25,9
800	23,4	31,0	28,4	30,0	16,8	26,4
1000	24,5	34,0	32,2	33,8	19,4	29,5
1250	20,5	25,3	24,5	25,0	17,4	21,4
1600	24,0	23,3	20,9	22,1	17,7	20,5
2000	23,6	20,2	15,0	20,3	14,6	18,6
2500	13,8	15,3	9,0	14,7	3,6	11,6
3150	9,0	14,1	6,8	9,7	0,2	9,2
4000	7,5	10,4	6,3	3,2	-1,6	6,0
5000		1,6	-2,6	-3,1		-3,9

^{*} $F_{pl} \ge \delta_{pl0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle B.4. Variante Fensterlaibungslösung, Leistungsstufe 6, $\dot{V}=$ 60 m³/h : Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el <i>L</i> _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S3	S4	S 5	
50	17,0	17,1 **	11,0	10,4	9,1	10,0
63	18,1	18,3	14,1	18,3	15,7	15,5
80	16,3	16,1	10,0	15,8	11,7	13,1
100	15,5	16,7 **	13,6	15,6		13,1
125	19,7	23,1	19,9	18,9	15,0 *	18,9
160	20,7	22,9	19,9	20,8	17,5	19,2
200	26,8	28,4	20,8	26,7	26,5	25,0
250	28,4	28,5	24,4	27,3	26,8	25,6
315	35,0	36,2	32,0	33,9	30,1	32,6
400	32,8	37,2	31,7	32,7	30,2	32,6
500	36,2	40,3	37,0	38,3	34,2	36,2
630	34,9	39,5	37,2	37,3	28,8	35,2
800	29,9	37,1	34,5	36,1	24,8	32,6
1000	27,4	38,5	36,4	38,2	25,2	33,9
1250	31,0	35,7	35,2	34,6	28,3	31,8
1600	34,4	33,5	29,4	30,8	29,3	30,7
2000	35,0	32,7	24,6	30,7	27,1	30,3
2500	27,7	30,1	20,7	28,3	18,3	26,0
3150	22,5	27,7	19,2	22,2	14,0	22,7
4000	19,7	22,5	18,0	16,3	11,7	18,2
5000	12,6	17,1	12,1	11,4	3,1	12,3

^{*} $F_{pl} \ge \delta_{pl0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle B.5. Variante Fensterlaibungslösung, Leistungsstufe 8, $\dot{V}=80~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el <i>L</i> _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S 3	S4	S5	
50	17,0	32,2 **	12,0		12,8	26,1
63	19,5	32,8 **	16,0	20,4	16,3	26,8
80	17,5	29,4 **	16,1	21,9	10,4	23,6 *
100	16,2	24,5 **	15,1	20,3		19,2
125	24,3	27,8	22,6	23,8		23,3 *
160	24,2	27,0	23,2	26,1	20,0	23,2
200	30,1	32,0	25,4	31,3	29,2	28,6
250	32,8	32,4	28,8	32,2	31,5	29,9
315	38,1	40,7	36,3	37,6	32,9	36,6
400	38,7	42,4	38,5	38,5	36,1	38,1
500	41,4	45,3	41,9	44,1	39,0	41,3
630	37,2	42,9	40,7	42,6	31,6	38,7
800	38,0	46,9	47,6	43,8	33,7	42,5
1000	36,1	44,4	43,6	44,4	33,3	40,2
1250	36,6	40,8	40,4	40,6	33,8	37,1
1600	42,0	42,4	39,8	40,5	36,9	39,2
2000	41,2	38,6	32,1	37,5	33,0	36,5
2500	35,3	37,3	30,7	35,7	25,9	33,4
3150	32,1	36,6	30,1	31,0	22,9	31,8
4000	29,1	31,8	28,3	26,7	20,3	27,6
5000	23,1	27,0	22,6	22,0	14,0	22,4

^{*} $F_{pl} \ge \delta_{pl0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Tabelle B.6. Variante Fensterlaibungslösung, Leistungsstufe 10, $\dot{V}=100~\rm{m}^3/h$: Messflächen-Intensitätspegel und Schallleistungspegel.

Frequenz	A-be	el L _{I,A}	Schall- leistungs- pegel L _{WA}			
			[dB(A)]			
	S1	S2	S3	S4	S5	1
50	39,7	35,1	16,8	18,0	15,8	33,5
63	39,9	34,5	18,8	22,6	19,7	33,6
80	38,2	34,0	17,2	22,3	16,5	32,2
100	36,2	31,4	20,5	26,3		30,0
125	34,1	31,3	25,8	26,5	18,2 *	29,0
160	30,0	30,8	26,5	29,1	21,5 *	27,3
200	35,3	35,3	29,3	35,4	33,9	32,6
250	36,6	35,7	31,3	35,8	35,3	33,5
315	43,4	45,0	38,9	43,4	37,9	41,3
400	41,9	45,2	39,9	41,3	38,9	40,9
500	47,7	51,4	47,8	48,0	45,0	47,2
630	43,4	47,5	45,4	46,9	37,4	43,5
800	40,8	47,4	44,1	47,1	34,5	43,0
1000	43,2	52,3	49,1	52,0	36,5	47,7
1250	42,6	45,8	45,1	45,4	38,3	42,2
1600	51,5	50,1	45,6	49,4	45,3	47,6
2000	52,5	49,8	43,6	49,5	45,1	47,8
2500	42,2	41,9	36,9	43,5	32,1	39,1
3150	39,4	42,0	36,4	37,6	29,9	37,7
4000	36,8	37,9	34,8	34,0	27,7	34,2
5000	31,6	33,7	30,1	29,5	21,5	29,6

^{*} $F_{pl} \ge \delta_{pl0}$ - 10 dB

^{**} Wiederholpräzision der Teilleistungsbestimmung abw. von ISO 9614-2 [1]

Abbildung C.1. Variante Standardfassadenabschluss ES: Lüftungsöffnungen außenseitig (Außenluft oben, Fortluft unten), Fassadenabschluss noch nicht montiert.

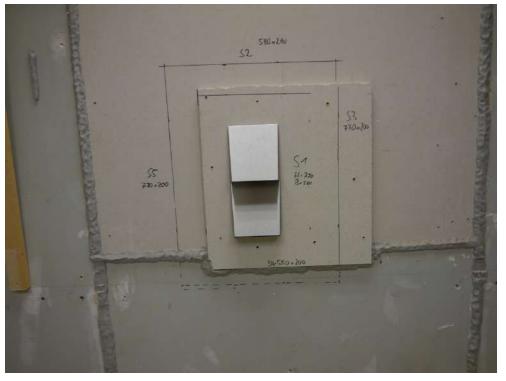


Abbildung C.2. Variante Standardfassadenabschluss ES: Lüftungsöffnungen außenseitig mit montiertem Fassadenabschluss Edelstahlschote (prüffertig).

\$2 \$10 x 200

Abbildung C.3. Variante Fensterlaibungslösung: horizontaler Verzug der Luftkanäle im systemeigenen Montageset Fensterlaibung vor Montage von EPS-Abdeckplatte, Mineralfaserdämmung und MDF-Box (Die dargestellten Abmessungen der Teilmessflächen beziehen sich auf die Messung der Variante ES).

Abbildung C.4. Variante Fensterlaibungslösung: Außenseitige Lüftungsöffnungen in der nachgebildeten Fensterlaibung (Außenluft oben, Fortluft unten), Fassadenabschluss noch nicht montiert.

Abbildung C.5. Variante Fensterlaibungslösung: Fassadenabschluss auf der nachgebildeten Fensterlaibung montiert (prüffertig).

Abbildung C.6. Variante Fensterlaibungslösung: Detailansicht des montierten Fassadenabschlusses auf der nachgebildeten Fensterlaibung.

extract air Oben TOP

Abbildung C.7. Lüftungsgerät innenseitig mit Lüftungsöffnungen (Zu- und Abluft) vor Montage der Vorsatzschale sowie der Anschlusskanäle, Abdichtung zum Prüfstand noch unvollständig.

Abbildung C.8. Ansicht Lüftungsgerät innenseitig vor Montage der Vorsatzschale, Abdichtung zum Prüfstand vollständig.

Abbildung C.9. Ansicht Lüftungsgerät innenseitig mit aufgesetzten Lüftungskanälen vor Montage der Vorsatzschale.

Abbildung C.10. Ansicht Lüftungsgerät innenseitig nach Montage der Vorsatzschale, Gerätedeckel entfernt.

1512200044 - BP 14-3421 - 0120 - 69 1937 034 A 1927 9040552 110 20101 HILL 18 HILL 18182 (IL 16-88-86 2406 2 180 200 09 - M2110 - 12-86/17-00 - 44090424151

Abbildung C.11. Ansicht Lüftungsgerät innenseitig mit montierten Lüftungskanälen; Zustand vor dem Schließen der Vorsatzschale.

Abbildung C.12. Ansicht Lüftungsgerät innenseitig: prüffertig mit geschlossener Vorsatzschale, Tellerventil ABL bzw. ZUL und Abdeckung U² montiert.

(Herstellerunterlagen)

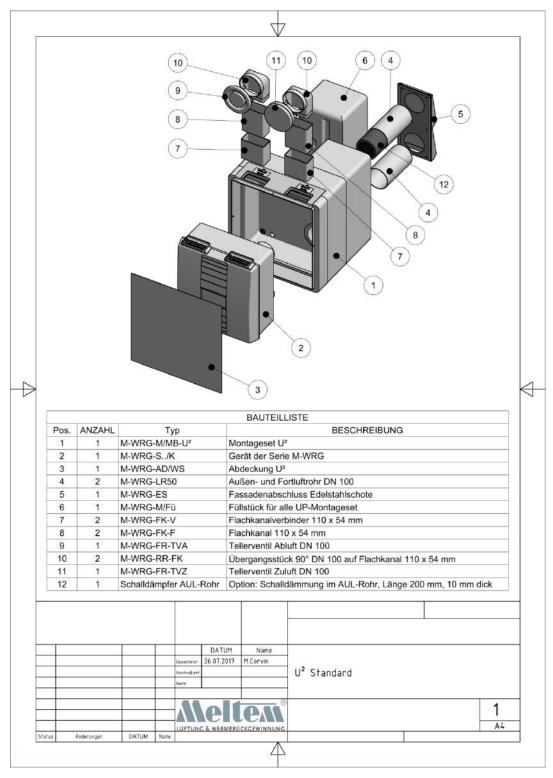


Abbildung D.1. Explosionszeichnung, Variante Standardfassadenabschluss ES.

(Herstellerunterlagen)

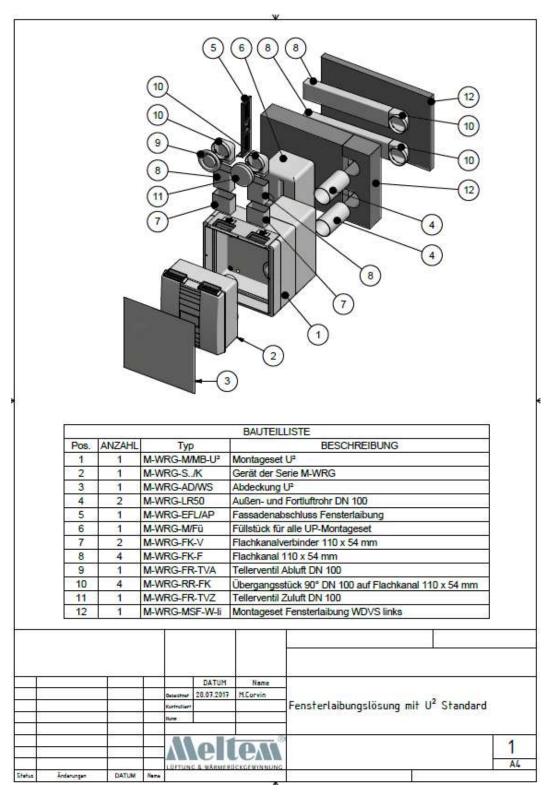


Abbildung D.2. Explosionszeichnung, Variante Fensterlaibungslösung.

Prüfmittel

Für die Messungen und Auswertungen wurden die Prüfmittel aus nachfolgendem Verzeichnis verwendet:

Tabelle E.1. Prüfmittel.

Bezeichnung	Hersteller	Тур	Seriennummer
Intensitäts-Messsystem	Brüel & Kjaer	2270	3009304
Intensitätssondenkit	Brüel & Kjaer		
Mikrofonpaar		4197	2984593-1/ 2984593-2
Vorverstärker		2683	3038462
Intensitätskalibrator	Brüel & Kjaer	4297	2439841
Hygro-/Thermo-/Barometer	Lufft	Opus 20	097.1113.0802.020
Auswertesoftware	Brüel & Kjaer	BZ5503- Measurement Partner Suite	Version 4.6.1.64- 18.03.2016